
Zauberflöte: A Transparent Peer-to-Peer CDN

Anish Athalye
aathalye@mit.edu

Ankush Gupta
ankush@mit.edu

Katie Siegel
ksiegel@mit.edu

Abstract

Zauberflöte is a peer-to-peer content delivery network.
The system uses WebRTC to cache and distribute content
between peers. Zauberflöte provides an easily accessi-
ble way for developers to alleviate content delivery band-
width concerns by marking DOM elements such that Za-
uberflöte will fetch these resources from peers with that
resource. The Zauberflöte system has server-side tracker
and WebRTC signaling channel components, as well as
client-side scripting that requests and delivers content be-
tween peers. This version of the system implements ba-
sic chunking, parallelism, and fault tolerance. In this pa-
per, we describe the motivation for Zauberflöte and the
design and implementation of the different components
that comprise the system. We then detail future improve-
ments that could be made to increase the robustness and
performance of the overall system.

1 Introduction

It is common for personal blogs and other small websites
to gain sudden attention on large, high-traffic websites
such as reddit. Since these websites usually experience
much smaller traffic loads, the hardware devoted to host-
ing them is typically not powerful enough to cope with
this large influx of content requests. These sudden, unex-
pected bursts of traffic often result in websites loading at
extremely slow speeds, or not loading at all, and is collo-
quially known as the “reddit hug of death” or the “reddit
effect.”

Typical means for dealing with this situation involve
utilizing Content Delivery Networks (CDNs), but these
are expensive, especially for websites which only expe-
rience such high loads on an occasional basis. An ideal
solution would be a lightweight means to mimic the ben-
efits of an ordinary CDN, which is typically backed by a
robust network of machines.

In this paper, we present Zauberflöte, a peer-to-peer

CDN. Zauberflöte provides an easy way for developers
to distribute content to clients via a peer-to-peer network,
rather than directly from the central server that hosts the
content. Zauberflöte is comprised of a server-side com-
ponent and a client-side component. The centralized,
server-side component both tracks resource propagation
metadata and acts as an assist for opening peer-to-peer
data channel connections. The lightweight client-side
component requests resources from peers and distributes
resources in response to peer requests.

Zauberflöte’s design is based on the BitTorrent proto-
col [1], by which clients requesting content attempt to
receive chunks of data from other clients, rather than
retrieving the entire file from a central server. As with
BitTorrent trackers, any developer could host their own
tracker and service it to connect peers requesting a re-
source with peers distributing the resource.

The Zauberflöte client-side code runs purely in the
browser and is completely transparent to the user. The
user does not have to install any application on their com-
puter to obtain desired resources peer-to-peer. As a re-
sult, the Zauberflöte client code only runs when a user
is currently visiting the website, adding no burden to the
user from constant background processes.

In designing Zauberflöte, we took into consideration
the unique problems presented by browser-to-browser
content sharing. Website visitor churn is often very high
with any type of website; our system had to be robust
under these common conditions. Zauberflöte forms peer-
to-peer connections quickly and immediately streams re-
quested resources through these data channel connec-
tions. Zauberflöte also recovers quickly from data re-
quest failures; the Zauberflöte data chunking component
minimizes latency from these failures and quickly retries
resource requests with other peers.

2 Zauberflöte API

Zauberflöte supports peer-to-peer loading for CSS (via
link elements), Javascript (via script elements), and
images (via img elements). For an existing website to
utilize Zauberflöte, the developer simply needs to make
two changes to the DOM elements.

The first change is renaming the src or href at-
tribute to data-zf-fallback. Zauberflöte uses the
data-zf-fallback attribute in order to (1) prevent the
browser from automatically fetching the resources, and
(2) provide a URL to be used in the event that the peer-
to-peer network is unable to serve the content.

The second attribute that must be present on a
DOM element that is fetched by Zauberflöte is the
data-zf-hash attribute. The data-zf-hash attribute
is the SHA1 hash of that resource, which can be com-
puted by the developer, and is utilized by Zauberflöte to
ensure integrity of data fetched via peer-to-peer interac-
tion.

3 Implementation

The Zauberflöte architecture consists of several loosely-
connected components (see Figure 1). At the highest
level, there is a download manager that provides a re-
liable download service. It relies on the tracker interface
and the connection manager. The tracker interface fa-
cilitates communication with the central tracker for in-
formation about peers and file sizes, and the connection
manager provides an interface for peer-to-peer message
transfer.

Our components rely on two standard APIs provided
by modern browsers, WebSockets [2] for client-server
communication and WebRTC [3] for peer-to-peer com-
munication.

3.1 Connection manager

The connection manager is responsible for establish-
ing connections between peers and facilitating peer-
to-peer message transfers. It is a thin layer on top
of WebRTC that handles maintaining connections with
multiple peers, associating peers with peer IDs that
are assigned by our tracker. It manages all signaling
through the signaling channel, which implements sig-
naling through our central server using WebSockets. At
this time, this signaling server is the same server that is
running the tracker, but they are logically separate com-
ponents, so theoretically, they could be decoupled if the
need arises for better load balancing.

Download Manager

Tracker Interface

 calls

Connection Manager

 calls callbacks

WebSocket

 calls

 callbacks

Signaling Channel

 calls callbacks

 calls

WebRTC

 calls

 callbacks

 callbacks callbacks

Figure 1: Relationship between different client-side
components of the Zauberflöte peer-to-peer download
service. Components in gray are standard browser APIs.

3.2 Download manager

The download manager is the top-level client interface
for peer-to-peer downloads. It provides an API by which
the client can provide a hash, and optionally, a fall-
back HTTP URL. The download manager will asyn-
chronously download the content associated with the
hash and call a user-provided callback function when
finished. The download manager implements reliable
download, preferring peer-to-peer over HTTP when pos-
sible.

3.2.1 Chunking

Zauberflöte divides assets into chunks; chunks are indi-
vidually requested and sent between peers. We use a
standard chunk size of 25 KB in our implementation;
preliminary tests showed this chunk size to be reason-
able. When a client asks for a resource, the download
manager for that client determines the number of chunks
for that resource from the resource’s total size. The
download manager then evenly distributes requests for
these chunks among the peers with the resource.

Requests for chunks time out on a per-chunk basis.
We track the time Zauberflöte last sent a request for each
chunk; if this time exceeds a cutoff, we randomly choose
another peer with the resource and send the chunk re-
quest to that peer. We periodically retrieve an updated
peers list for this resource from the tracker. Zauberflöte
uses exponential backoff when sending chunk requests
so we don’t flood peers with requests as a result of slow
network connectivity.

2

3.2.2 Hash validation

When fetching content peer-to-peer, it is necessary to au-
thenticate data that is downloaded. Zauberflöte achieves
this by using a cryptographic hash function to authenti-
cate data that is downloaded. Assets that are to be down-
loaded peer-to-peer are identified by their hash, and once
the download manager finishes downloading the con-
tent from peers, it verifies that the hash of the contents
matches what is expected. The download manager re-
jects content if there is an authentication error. In the cur-
rent implementation, if this occurs, the download man-
ager falls back to downloading the content over HTTP
from the fallback URL.

3.2.3 Parallelization

Zauberflöte divides assets into chunks primarily to en-
able parallelization. Because individual peers may not
have high outbound bandwidth, it is beneficial to down-
load in parallel from many peers. Our implementation
parallelizes chunk downloads, with pending chunk re-
quests balanced between available peers in the network.
If certain peers are slow to respond, the download man-
ager automatically requests chunks from faster peers to
optimize download time. Parallel downloads help reduce
download latency.

3.2.4 Fault tolerance

Our download manager implements reliable download
semantics. The implementation is resilient to peer fail-
ure, automatically re-requesting chunks from live peers
when necessary. In the worst case, even if all peers
go down, the implementation falls back to downloading
over pure HTTP from the centralized server as a last re-
sort. In any case, the download manager guarantees that
the data will be downloaded and that the download will
be authenticated.

3.3 Tracker interface
Via the tracker interface, the download manager can re-
quest a list of peers that have a certain resource, specify-
ing the desired resource via that resource’s unique SHA1
hash. After a client receives the full resource, the down-
load manager publicizes that this client has the resource
via this tracker interface, letting the central tracker know
that it possesses the resource.

3.4 Signaling channel
The signaling channel facilitates opening the WebRTC
data channel connection between peers. The WebRTC
protocol requires one peer to send a WebRTC offer and

ICE candidate to the other peer, and that other peer to
send back a WebRTC answer, for a peer-to-peer data
channel to be opened. The server-side signaling channel
facilitates this information transfer between peers by di-
recting offers, ICE candidates, and answers to their spec-
ified peer recipient.

3.5 DOM injection layer
The DOM injection layer facilitates the link between the
DOM as displayed in the browser and the entire peer-to-
peer system. The DOM injection layer creates a Web-
Socket, and then instantiates a Tracker and Signaling
Channel. It uses these to then instantiate a Connection
Manager and in turn, uses this to instantiate a Download
Manager.

The DOM injection layer then iterates through
all the DOM elements with the data-zf-hash and
data-zf-fallback attributes. It the values of these
attributes to fetch the data via the Download Manager.
Upon receiving the data for each web element, the DOM
injection layer creates an in-memory Blob and generates
URL for this object. It then obeys the following rules,
which can easily be expanded to support other DOM el-
ements:

Script elements have the type of their Blob set to
text/javascript. They then have their src at-
tribute set to the URL of the in-memory Blob.

Link elements have the type of their Blob set to
text/css. They then have their href attribute set
to the URL of the in-memory Blob, and rel at-
tribute set to stylesheet.

All other elements have the type of their Blob set to
application/octet-stream. They then have
their src attribute set to the URL of the in-memory
Blob. As most browsers can intelligently determine
the content of application/octet-stream data,
this functions properly for Image nodes, and serves
as the generic template for any other node.

3.6 Server implementation
There are two main server-side components to Za-
uberflöte. First is the tracker, which maintains a mapping
from resource hashes to the peers that have that resource.
Second is the WebRTC handshake channel, which passes
information between peers to enable them to open We-
bRTC data channels.

3.6.1 Tracker

The tracker is hosted on a remote server and tracks client
connections. The client-side tracker interface opens a

3

WebSocket connection with the remote tracker, which
registers the existence of this client. The remote tracker
responds to requests from the client for lists of peers
with a given resource. When a client publicizes that it
has a resource through the tracker interface, the remote
tracker updates the list of peers with the resource to in-
clude this client, as long as its WebSocket connection re-
mains open. Upon WebSocket disconnection, the tracker
“forgets” about the client and erases all data about the
client’s held resources.

3.6.2 WebRTC handshake channel

WebRTC handshake information–the offers, ICE candi-
dates, and answers–are sent through the client-side sig-
naling channel through a websocket to the server. The
client-side signaling channel specifies a peer to which
this WebRTC handshake information should be sent; if
the server has an open websocket connection with that
peer, the server passes that message to the peer.

4 Evaluation

We tested Zauberflöte on a simple site that loads one
large 768 KB image from a remote server. In our tests,
we compare page load times using both plain HTTP and
Zauberflöte in a range of scenarios. Specifically, we var-
ied two parameters: the number of seeding peers and the
number of leeching peers. A seeding peer is a peer that
has the desired resource, which in our tests, was the sin-
gle image on the site. A leeching peer is a peer that
desires the resource, so must request it either from the
central site host or from peers with the resource.

Our tests launched a certain number of seeding peers,
then launched a number of leeching peers, measuring the
average load latency for the leeching peers. We com-
pare this latency data with the page load latency when
the leeching peers must load the content from the central
site host.

4.1 Simulating the “reddit effect”

Our tests involved programmatically opening browser
windows and measuring load times. Due to limitations
of the number of browser windows that can be reason-
ably opened and the memory overhead of Chrome, our
browser testing environment of choice, we could not rea-
sonably open enough browser windows to exactly imitate
millions of simultaneous visitors to a site. Instead, we
simulated the “reddit effect” by throttling the content de-
livery bandwidth of the central server hosting the desired
resource. We limited the content delivery rate to 64 KB/s
and performed benchmark tests that compared the perfor-

Page load time (ms)

"heatmap.dat" using 1:2:3

 1 2 3 4 5 6 7 8 9 10

Leechers

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

S
ee

d
er

s

 0

 5000

 10000

 15000

 20000

Figure 2: Average page load time (lower is better) over
P2P for seeders vs leechers.

mance of Zauberflöte against the HTTP content delivery
latency under the throttled bandwidth conditions.

4.2 Testing infrastructure
Our testing infrastructure was made up of a virtual ma-
chine hosting our website, a tracker running on the host
machine, and a collection of web browsers acting as
clients. All test code ran on the same physical machine.
We used Vagrant to provision an Ubuntu 14.04 LTS vir-
tual machine running nginx 1.4.6 to serve a test page de-
signed for benchmarking. To simulate a low-resource
server / heavy loads, we used kernel traffic shaping to
limit the outbound bandwidth of the virtual machine. To
simulate browser clients, we wrote a test driver in Scala
that made use of Selenium WebDriver and ChromeDriver
to launch and control Google Chrome browser windows.
The test driver spawned and communicated with browser
windows and benchmark code through Javascript so it
could measure page load times.

4.3 Results
4.3.1 Scalability of Zauberflöte

The first empirical analysis that we performed was de-
termining how page load time over Zauberflöte scales as
we vary the number of users who have the page loaded
(we call these users seeders) and the number of users
attempting to concurrently download the page (we call
these users leechers).

As seen in Figure 2, the performance of Zauberflöte
depended on the seeder-to-leecher ratio. In general,
the lowest latency in load time was achieved when the
seeder-to-leecher ratio was highest. However, the system
performed well in any condition with many seeder peers,
reflecting the performance benefits provided by chunking
of resources and parallelization of sending chunks. The
system performed worst when there were many leechers
and only a few seeders.

4

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5 10 15 20 25 30 35

P
ag

e
lo

ad
 t

im
e

(m
s)

Simultaneous viewers

Page load time as number of simultaneous clients increases

P2P

HTTP

Figure 3: Average page load time (lower is better) over
P2P compared to HTTP on throttled server assuming
constant ratio of 1 seeder per leecher.

4.3.2 Zauberflöte vs HTTP

Our next empirical analysis was to keep the ratio of seed-
ers to leechers constant at 1, and compare the page load
times for a throttled HTTP server vs Zauberflöte as we
increase the number of users attempting to concurrently
load the page.

As seen in Figure 3, Zauberflöte performed well in
comparison to loading content over HTTP. While both
experienced increases in content delivery latency with in-
creasing numbers of peers requesting content, in general
Zauberflöte had lower latency than HTTP. Note that our
simulated “reddit effect” implies hundreds of thousands
of other simultaneous connection; however, since we are
simulating the effect, these imaginary peers cannot dis-
tribute content to new peers. So, Zauberflöte could po-
tentially provide an even greater latency drop with more
active seeding peers, which would be the case in a real-
world scenario.

5 Future work

There remains numerous optimizations that would make
Zauberflöte more performant when used on a deployed,
high-traffic site. We detail these potential optimizations
in this section, along with features which could allow Za-
uberflöte to handle more use cases.

5.1 Per-chunk hash validation

As of right now, Zauberflöte verifies the integrity of the
downloaded resource once all chunks have been retrieved
and joined. In normal circumstances where all chunks
successfully download, this may not prove to be an is-
sue. However, waiting until all chunks are downloaded
and combined to verify the file means that if a single
chunk had been corrupted or compromised, all chunks

for the file would need to be downloaded, combined, and
verified again.

An improvement to Zauberflöte that would mitigate
this issue would be to have the Tracker module provide
checksums for each chunk. From the user’s perspective,
the data-zf-hash attribute currently used to store the
hash of the file would be replaced with the hash of the
JSON object storing a list of the hashes for each chunk.
Upon connection to the tracker, each client would receive
that list and verify its integrity, and then be able to verify
and redownload each chunk independently in the event
of failure.

5.2 Hybrid downloads over HTTP and P2P
Another improvement to Zauberflöte would be to allow
it to parallelize downloads via HTTP and P2P transfers
simultaneously. By using the Range HTTP header at-
tribute, Zauberflöte could fetch the same data as con-
tained in P2P chunks from the HTTP fallback server. By
utilizing both HTTP and P2P, Zauberflöte may be able to
provide service speed that is expected in all instances to
be faster than simply using HTTP alone.

5.3 Variable request sizes
Implementing variation in requested chunk sizes could
allow Zauberflöte to independently determine a more op-
timal chunk size for each asset. For instance, we hypoth-
esize that different chunk sizes are optimal for differently
sized assets, and potentially for different media types.
If Zauberflöte more intelligently determined the optimal
size of chunks for each resource, overall download la-
tency would decrease.

5.4 Bandwidth detection and prioritization
If Zauberflöte could detect which peers have higher
bandwidth connections, and thus are more capable of
swiftly delivering data to a client, Zauberflöte could pri-
oritize requesting data from these peers. Perhaps Za-
uberflöte could request larger chunks from peers with
higher bandwidth connections. Zauberflöte could also
dynamically react to poor connections with peers during
the chunk requesting process; chunk requests that subse-
quently time out could be redistributed more intelligently
among peers with higher bandwidth connections.

5.5 Support for HTML5 media
It is possible to add functionality such that Zauberflöte
can construct ReadableStreams (as specified by the
Streams standard [4]) from the chunks of data as it re-
ceives them. Using this stream, the DOM injection layer

5

could feasibly replace HTML5 media elements such as
embedded Video and Audio. Since these types of me-
dia are particularly large in size, being able to distribute
them in a decentralized, peer-to-peer manner could pro-
vide substantial load reduction for the central server.

5.6 Automatic conversion to Zauberflöte

Developers can integrate their sites to use Zauberflöte by
adding attribute tags to the site resources they wish to
be distributed using the system. However, sites feature
dozens of resources; as a result, adapting a site to use
Zauberflöte could present a burden on the developer. If
we were to provide a script that developers could use to
change HTML such that all resources were loaded us-
ing Zauberflöte, this would ease integration pains and in-
crease adoption.

6 Related work

Currently, alternative peer-to-peer content delivery net-
works do exist. The three prominent peer-to-peer CDNs
are PeerJS, PeerCDN, and Peer5. PeerJS is open-sourced
and similarly transparent, but only encapsulates the func-
tionality of our connection manager module. Peer-
CDN [5] is a closed-source alternative providing similar
functionality to Zauberflöte; it offloads site content de-
livery to users of a site, significantly lowering strain on
the central source. However, PeerCDN was acquired by
Yahoo! and no longer exists. Finally, Peer5 is a service
used by companies today. Unfortunately, Peer5 is a paid
service that is entirely closed-source; the Peer5 code is
not transparent to the clients on which it runs.

7 Conclusions

Zauberflöte is an open-sourced system that will allow de-
velopers to easily utilize a peer-to-peer CDN to increase
the content delivery bandwidth of their sites, even when
operating under heavy request loads. Preliminary data
shows that the system performs well under medium and
high workloads, and when the seeder-to-leecher ratio is
high. Future work could refine the system such that it
works well in a wide variety of scenarios. Our results
show that peer-to-peer CDNs are a promising low-cost
alternative to CDNs that require an extensive network of
server and server infrastructure.

References
[1] B. Cohen, “The bittorrent protocol specification,” tech. rep., Jan.

2008. http://www.bittorrent.org/beps/bep_0003.html.

[2] W3C Web Applications Working Group, “The websocket
api,” tech. rep., Sept. 2012. http://www.w3.org/TR/2012/

CR-websockets-20120920/.

[3] W3C WebRTC Working Group, “Webrtc 1.0: Real-time com-
munication between browsers,” tech. rep., Feb. 2015. http:

//www.w3.org/TR/2015/WD-webrtc-20150210/.

[4] Web Hypertext Application Technology Working Group, “Streams
standard.” https://streams.spec.whatwg.org.

[5] PeerCDN, “Peercdn.” https://peercdn.com.

6

http://www.bittorrent.org/beps/bep_0003.html
http://www.w3.org/TR/2012/CR-websockets-20120920/
http://www.w3.org/TR/2012/CR-websockets-20120920/
http://www.w3.org/TR/2015/WD-webrtc-20150210/
http://www.w3.org/TR/2015/WD-webrtc-20150210/
https://streams.spec.whatwg.org
https://peercdn.com

	Introduction
	Zauberflöte API
	Implementation
	Connection manager
	Download manager
	Chunking
	Hash validation
	Parallelization
	Fault tolerance

	Tracker interface
	Signaling channel
	DOM injection layer
	Server implementation
	Tracker
	WebRTC handshake channel

	Evaluation
	Simulating the ``reddit effect''
	Testing infrastructure
	Results
	Scalability of Zauberflöte
	Zauberflöte vs HTTP

	Future work
	Per-chunk hash validation
	Hybrid downloads over HTTP and P2P
	Variable request sizes
	Bandwidth detection and prioritization
	Support for HTML5 media
	Automatic conversion to Zauberflöte

	Related work
	Conclusions

